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Abstract. In this paper, we establish with suitable assumptions the analyticity of
semigroups generated by a pair of generalized mixed linear regular differential operators

L(n,n)u(x) :=
(
L1nu1(x), L2nu2(x)

)
=

( ∑
0≤k≤n

pk(x)
( d
dx

)k
u1(x),

∑
0≤k≤n

qk(x)
( d
dx

)k
u2(x)

)

with involving an interface condition in the setting of complex Hilbert space X =
L2([a, b]) × L2([b, c]). We obtain quite general results that extend previous works by
the authors ([3], [10]). The key for showing the generation analytic semigroups will be
an inequality of the form

Re⟨
(
L(n,n) − ρI

)
u, u⟩X + δ|Im⟨

(
L(n,n) − ρI

)
u, u⟩X | ≤ 0,∀u ∈ D(L(n,n))

for some constant ρ > 0.

Keywords: unbounded operators, Dissipative operators, Adjoint, Interface condition,
C0- semigroups, analytic semigroups.

1. Introduction

Interface problems are a class of problems wherein two different differential equa-
tions are defined on two adjacent intervals and the solutions satisfy matching
conditions at the point of interface.We encounter these problems in the study
of acoustic wave guides [4]. Recently, a new class of problems of the type where
different differential operators are defined over two adjacent intervals, involving
certain mixed (interface) conditions are studied in [1, 2, 13] and the references
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therein. These problems involve a pair of differential operators of the type

(1.1)



L1nu1 =
∑

0≤k≤n

pk
( d
dx

)k
u1 = λu1,

defined on the interval I1 = [a, b]

L2mu2 =
∑

0≤k≤m

qk
( d
dx

)k
u2 = λu2,

defined on the adjacent interval I2 = [b, c],

where −∞ < a < c < +∞, λ is an unknown constant (eigenvalue) and the func-
tions u1and u2 are required to satisfy certain mixed conditions at the interface
x = b.

In this paper we consider the following differential system

(1.2)


du1
dt

−
∑

1≤k≤n

pk(x)
dku1
dxk

= 0 in I1

du2
dt

−
∑

1≤k≤m

qk(x)
dku2
dxk

= 0 in I2,

where (pk)1≤k≤n (respectively (qk)1≤k≤m ) are numerical functions on [a, b] (res-
pectively on [b, c]). Our goal is to establish some existence results and regularity
for solutions of the initial value problem associated with the system (1.2) i.e.,

(1.3)


du(t)

dt
− L(n,m)u(t) = 0, t ≥ 0

u(0) = u0

where L(n,m) is the pair of differential operators defined by
(1.4)

L(n,m)u =

(
L1nu1
L2mu2

)
=


L1nu1 =

∑
0≤k≤n

pk
( d
dx

)k
u1 on I1 = [a, b]

L2mu2 =
∑

0≤k≤m

qk
( d
dx

)k
u2 on I2 = [b, c].

For n = m = 2, a similar works on these problems for regular case have been
discussed in [3, 7, 10], and the problem of having singularity at the boundary is
discussed in [11].

In [3], T. Bhaskar and R. Kummar have considered the following system on
the Hilbert space X:

(1.5)


du1
dt

− τ1u1 = 0 in I1,

du2
dt

− τ2u2 = 0 in I2,
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where τk is the second order differential operator τkuk = pku
′′
k + qku

′
k + rkuk

on Ik for k = 1, 2. They proved that under certain assumptions on the matrices
A and B that the operator ((τ1, τ2) − ωI) generates an analytic semigroup of
contractions.

In a similar order of ideas, A.Saddi and the present author in [10], proved
that certain differential operators of a single variable on an interval [a, c], with
matrix coefficients and interface conditions at a point b ∈]a, c[, generate ana-
lytic semigroups in L2. More precisely, the following second order operator is
considered in the space X = L2(a, b)4 × L2(b, c)4

Lu = L



u11
u12
u13
u14
u21
u22
u23
u24


=



p11u
′′
11 + q11u

′
11

p11u
′′
12 + q11u

′
12

p12u
′′
13 + q12u

′
13 in [a, b]

p12u
′′
14 + q12u

′
14

p21u
′′
21 + q21u

′
21

p21u
′′
22 + q21u

′
22

p22u
′′
23 + q22u

′
23 in [b, c]

p22u
′′
24 + q22u

′
24

where pki ∈ H2(a, c), pki(x) ≥ p > 0 and qki ∈ AC[a, c].

It is well know that problem of type (1.3) is well posed in a Banach space X
if and only if the operator (L(n,m), D(L(n,n))) generates a C0-semigroup (Tt)t≥0

on X. Here the solution u(t) is given by u(t) = Ttu0 for the initial data u0 ∈
D(L(n,n)). For operator semigroups we refer to [5, 8, 9].

The paper is organized as follows: In section 2, we start by setting up our
different notions and notations which we shall need in the sequel. In section 3, we
study the mixed operator L(n,m) and its adjoint L∗

(n,m) and investigate some of its

properties. In section 4, we study them-dissipativity of the operator (L(n,n)−ρI)
for some ρ > 0. The main results of this section are Lemma 4.1,which is the key
to proving our main results, Propositions 4.1 and 4.2 give conditions,when the
operator L(n,n) − ρI and its adjoint are dissipative. Using the results of section
4,we prove in section 5, that under suitable assumptions L(n,n) − ρI satisfies

(1.6) Re⟨
(
L(n,n)−ρI

)
u, ;u⟩X+δ|Im⟨

(
L(n,n)−ρI

)
u u⟩X | ≤ 0 ∀ u ∈ D(L(n,n))

with ρ > 0, so that L generates an analytic semigroup on X (see [6]).

2. Functional setting of the problem

We shall introduce a few notations and make some assumptions. Let R and C
represent the real and complex number fields and let Mn(K), (K = R, or C)
be the space of square n × n matrix with coefficients in K. For any compact
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interval I of R and for a nonnegative integer k, let Ck(I,C) denote the space of all
k-times continuously differentiable complex valued functions defined on I. Let
ACk(I,C) denote the space of all complex valued functions φ which have (k−1)
continuous derivatives in I and the (k−1)th derivative of φ absolutely continuous
in I. For a function φ, let φ(j) denote the jth derivative of φ, if it exists. If φ is
any function with (n−1)-derivatives, the vector k[φ] = column(φ,φ′, ..., φ(n−1))
is called the Wronskian of φ. For any n×m matrix A, let A∗ denote the adjoint
of A. For a square matrix A, A−1 denotes the inverse of A, if it exists. For
any two nonempty sets(topological spaces) X1 and X2, let X1 ×X2 denote the
cartesian product (space equipped with product topology) of X1 and X2, taken
in that order.

Let I1 = [a, b] and I2 = [b, c], where −∞ < a < b < c < +∞. We introduce
the functions spaces E(Ik,C) = {φ : Ik → K/ φ measurable } and denote by
L2(Ik, C) the Hilbert space defined by

L2(Ik,C) =
{
φ ∈ E(Ik, C)/

∫
Ik

|φ(x)|2dx < +∞
}
,

endowed with the inner product ⟨ . ⟩L2(Ik, C) and the norm ∥ . ∥L2(Ik, C) given by

⟨φ ,ψ⟩L2(Ik, C) =

∫
Ik

(φψ)(x)dx, for k = 1, 2

and

∥φ∥L2(Ik, C) =

(∫
Ik

|φ(x)|2dx
) 1

2

for k = 1, 2.

We consider the product Hilbert space X = L2(I1, C)× L2(I2, C) . Notice
X is a Hilbert space with the scalar product ⟨ . ⟩X and the norm ∥ . ∥X given
by

(2.1) ⟨u, v ⟩X = ⟨u1, v1⟩L2(I1, C) + ⟨u2, v2⟩L2(I2, C)

for all u = (u1, u2), v = (v1, v2) ∈ X and

∥(u1 , u2)∥X =

(
∥u1∥2L2(I1,C) + ∥u2∥2L2(I2,C)

) 1
2

, (u1, u2) ∈ X.

We consider the following spaces,

Hn(I1) =
{
φ ∈ ACm(I1, C) suth that φ and φ(n) are both in L2(Ik, C)

}
and

Hm(I2) =
{
φ ∈ ACm(I2, C) suth that φ and φ(m) are both in L2(I2, C)

}
.
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Let H(I1 × I2) = Hn(I1) × Hm(I2) be the cartesian product Hilbert space
with the inner product

⟨u, v⟩H = ⟨(u1, u2) , (v1, v2)⟩H

=
∑

0≤k≤n

∫
I1

u
(k)
1 v1

(k)dx+
∑

0≤k≤m

∫
I2

u
(k)
2 v2

(k)dx

and the associated norm

∥u∥H =

( ∑
0≤k≤n

∫
I1

|u(k)1 |2dx+
∑

0≤k≤m

∫
I2

|u(k)2 |2dx
) 1

2

.

For u1 ∈ Hn(I1), and u2 ∈ Hm(I2), we denote

(2.2) k[u1](b) = Column
(
u1(b), u

′
1(b), u

(2)
1 (b)..., u

(n−1)
1 (b)

)
and

(2.3) k[u2](b) = Column
(
u2(b), u

′
2(b), u

(2)
2 (b)..., u

(m−1)
2 (b)

)
.

Let A ∈ Mn(C) and B ∈ Mm(C) be non singular matrices with complex
entries.

Let L1n and L2m be a pair of formal ordinary differential operators of order
n and m defined on the intervals I1 and I2, respectively, of the form

L1nu1 =
∑

0≤k≤n

pk
( d
dx

)k
u1 =

∑
0≤k≤n

pkD
ku1 on I1

and

L2mu2 =
∑

0≤k≤m

qk
( d
dx

)k
u2 =

∑
0≤k≤m

qkD
ku2 on I2,

We make the following assumptions

(H1)


pn ∈ Hn(I1), pn > 0 on I1

pk ∈ ACk(I1), k = 1, 2, ....n− 1

p2 > 0 and p′2 > 0 on I1

p0 piecewise continuous on I1.

(H2)


qm ∈ Hm(I2), qm > 0 on I2

qk ∈ ACk(I2), k = 1, 2, ....m− 1

q2 > 0 and q′2 > 0 on I2

q0 piecewise continuous on I2.

and the interface condition at the point x = b, for (u1, u2) ∈ H(I1 × I2)

(H3) Ak[u1](b) = Bk[u2](b).
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Remark 2.1. If φ and ψ ∈ Ck(I1)
(
or φ, ψ ∈ Ck(I2)

)
, then the following

formula is easily verified

(2.4) ψφ(k) = (−1)kφψ(k) +
d

dt

( ∑
0≤j≤k−1

(−1)jψ(j)φ(k−1−j)

)

3. Mixed operator (L(n,m), D(L(n,m))) and its adjoint

In order to study the operator (L(n,m), D(L(n,m))), we introduce its Green for-
mula. We will be able to obtain some characteristic proprieties.

According to [12] the corresponding formal Lagrange adjoint expressions of
L1n and L2m are given as

L∗
1nu1 =

∑
0≤k≤n

(−1)k
(
d

dx

)k

pku1 and L∗
2mu2 =

∑
0≤k≤m

(−1)k
(
d

dx

)k

qku2.

Consider now the operator (L(n,m), D(L(n,m))) given by

D(L(n,m)) =
{
(u1, u2) ∈ H(I1 × I2)/Ak[u1](b) = Bk[u2](b),

βka = 0, k = 1, 2, ....n− 1

βjc = 0, j = 1, 2, ...,m− 1

}
L(n,m)u =

(
L1nu1, L2mu2

)
=

( ∑
0≤k≤n

pk
( d
dx

)k
u1,

∑
0≤k≤m

qk
( d
dx

)k
u2

)
(3.1)

with βka = u
(k)
1 (a) − γkau1(a) for k = 1, 2, ..., n − 2 and βn−1

a = u
(n−1)
1 (a) and

βjc = u
(j)
2 (c)− δjcu2(c) for j = 1, 2, ...,m− 2 and γm−1

c = u
(m−1)
2 (c) γka and δjc are

here fixed real numbers.

Theorem 3.1. The operator (L(n,m), D(L(n,m))) is a densely defined closed
unbounded linear operator in X.

Proof. According to [14], the operators (L1n, Hn(I1)) (resp. (L2m,Hm(I2)))
given in (3.1) is densely defined and closed on L2(I1, C) (resp. L2(I2, C))).
Hence the result (see also [15], Theorem 3.6).

Green’s formula for L(n,m): Let u = (u1, u2) ∈ D(L(n,m)) and v = (v1, v2) ∈
H, the Green’s formula takes the form⟨

L(n,m)u, v
⟩
X

=
⟨
L(n,m)(u1, u2), (v1, v2)

⟩
X

=
∑

1≤k≤m

∑
0≤j≤k−1

(−1)j(qkv2)
(j)u

(k−1−j)
2 (c)
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−
∑

1≤k≤n

∑
0≤r≤k−1

(−1)n(pkv1)
(r)u

(k−1−r)
1 (a)

+
{ ∑

1≤k≤m

∑
0≤j≤k−1

(−1)j(qkv2)
(j)u

(k−1−j)
2

−
∑

1≤k≤n

∑
0≤r≤k−1

(−1)r(pkv1)
(r)u

(k−1−r)
1

}
(b)

+

∫ b

a
(L∗

nv1)u1(x)dx+

∫ c

b
(L∗

mv2)u2(x)dx

=
∑

1≤k≤m

Λ∗
cku

(k−1−j)
2 (c)−

∑
1≤k≤n

Λ∗
aku

(k−1−r)
1 (a)

+
{ ∑

1≤k≤m

∑
0≤j≤k−1

(−1)j(qkv2)
(j)u

(k−1−j)
2

−
∑

1≤k≤n

∑
0≤r≤k−1

(−1)r(pkv1)
(r)u

(k−1−r)
1

}
(b)

+

∫ b

a
(L∗

nv1)u1(x)dx+

∫ c

b
(L∗

mv2)u2(x)dx

where

Λ∗k
c =

∑
0≤j≤k−1

(−1)j
∑

0≤i≤j

(
j

i

)
q
(j−i)
k (c)v2

(i)(c), k = 1, 2, ...,m

and

Λ∗k
a =

∑
0≤r≤k−1

(−1)r
∑

0≤i≤r

(
r

i

)
p
(r−i)
k (a)v1

(i)(a), k = 1, 2, ..., n.

Let us define two matrix P = (pij)1≤i,j≤n ∈ Mn(R) and Q = (qij)1≤i,j≤n ∈
Mm(R) as follows

P = (pij)1≤i,j≤n =

( ∑
1≤k,r≤n−1

arijp
(k)
r (b)

)
1≤i,j≤n

, arij ∈ R

and

Q =
(
qij

)
1≤i, j≤m

=

( ∑
1≤k,r≤m−1

crijq
(k)
r (b)

)
1≤i,j≤m

, crij ∈ R.

Now, by using the matrix P and Q, we verify that∑
1≤k≤m

∑
0≤j≤k−1

(−1)j(qkv2)
(j)u

(k−1−j)
2 (b)

−
∑

1≤k≤n

∑
0≤r≤k−1

(−1)r(pkv1)
(r)u

(k−1−r)
1 (b)
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=
(
v2(b), v′2(b), ..., v

(m−1)
2 (b)

)( ∑
1≤k,r≤m−1

crijq
(k)
r (b)

)
1≤i,j≤m

·
(
u2(b), u

′
2(b), ..., u

(m−1)
2 (b)

)
−

(
v1(b), v′1(b), ..., v

(n−1)
1 (b)

)( ∑
1≤k,r≤n−1

arijp
(k)
r (b)

)
1≤i,j≤n

·
(
u1(b), u

′
1(b), ..., u

(n−1)
1 (b)

)
)

From (2.2) and (2.3) and the fact that (u1, u2) ∈ D(L(n,m)), it follows that,

⟨L(n,m)u, v⟩X =
∑

1≤k≤m

Λ∗k
c u

(k−1−j)
2 (c)

−
∑

1≤k≤n

Λ∗k
a u

(k−1−r)
1 (a) +

(
k[v2]Qk[u2]− k[v1]Pk[u1]

)
(b)

+

∫ b

a
(L∗

1nv1)u1(x)dx+

∫ c

b
(L∗

2mv2)u2(x)dx.

Introducing the new matrix

M1 = (A−1)∗P ∗ and M2 = (B−1)∗Q∗

and using the interface condition (H3) ,we then transform the Green’s formula
to

⟨L(n,m)u, v⟩H =
∑

1≤k≤m

Λ∗k
c u

(k−1−j)
2 (c)−

∑
1≤k≤n

Λ∗k
a u

(k−1−r)
1 (a)

+
(
(M2k[v2])

∗Bk[u2]− (M1k[v1])
∗Ak[u1]

)
(b) +⟨u1, L∗

1nv1⟩+ ⟨u2, L∗
2mv2⟩.

The following proposition characterize the adjoint operator of L(n,m).

Proposition 3.1. Let (L(n,m), D(L(n,m))) be the operator given as in (3.1).
Then its adjoint (L∗

(n,m), D(L∗
(n,m))) is a densely defined closed unbounded op-

erator defined by
D(L∗

(n,m)) =
{
(v1, v2) ∈ H(I1 × I2)/ M1k[v1](b) =M2k[v2](b),

β∗ka = 0, k = 1, 2, ....n− 1

β∗c j = 0, j = 1, 2, ...,m− 1

}
L∗
(n,m)(v1, v2) = (L∗

1nv1, L
∗
2mv2).

(3.2)

where β∗ka = v
(k)
1 (a)−ωk

av1(a), k = 1, 2, ..., n−1 and β∗jc = v
(j)
2 (c)−ωj

cv2(c), j =

1, 2, ...,m− 1 ωk
a and ωj

c are here fixed real numbers.
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Proof. Let T be the linear operator defined by
D(T ) =

{
(v1, v2) ∈ H/ M1k[v1](b) =M2k[v2](b),

β∗ka = 0, k = 1, 2, ....n− 1

β∗jc = 0, j = 1, 2, ...,m− 1

}
T (v1, v2) = (L∗

1nv1, L
∗
2mv2)

We have to show that L∗
(n,m) = T . From the Green’s formula, it follows that

D(T ) ⊂ D(L∗
(n,m)). Now we need to prove the following equality

⟨L(n,m)(u1, u2), (v1, v2)⟩ = ⟨(u1, u2), L∗
(n,m)(v1, v2)⟩,

for all (u1, u2) ∈ D(L(n,m)) and (v1, v2) ∈ D(L∗
(n,m)), which follows if we prove

that ∑
1≤k≤m

Λ∗k
c u

(k−1−j)
2 (c)−

∑
1≤k≤n

Λ∗k
a u

(k−1−r)
1 (a))

+
(
(M2k[v2])

∗BK[u2]− (M1k[v1])
∗Ak[u1]

)
(b)) = 0.

Choose (u1, u2) ∈ D(L(n,m)) verifying u1(a) = u2(c) = 0; then we obtain(
(M2k[v2])

∗BK[u2]− (M1k[v1])
∗Ak[u1]

)
(b)) = 0,

Green’s formula implies that∑
1≤k≤m

Λ∗k
c u

(k−1−j)
2 (c)−

∑
1≤k≤n

Λ∗k
a u

(k−1−r)
1 (a) = 0.

An appropriate choice of functions (u1, u2) ∈ D(L(n,m)), we get β
∗k
a = β∗jc =

0, 1 ≤ k ≤ n− 1, 1 ≤ j ≤ m− 1 and M1k[v1](b) =M2k[v2](b). This implies that
D(L∗

(n,m)) ⊂ D(T ) and therefore L∗
(n,m) = T as required.

Lemma 3.1. For v = (v1, v2) ∈ D(L∗
(n,m)) we have

⟨L∗
(n,m)v, v⟩X =

∑
0≤k≤n

(−1)k
∫ b

a
pkv1(v1)

(k)dx

+
∑

1≤k≤n

∑
0≤j≤k−1

(−1)j(v1)
(j)(pkv1)

(k−1−j)

]b
a

+
∑

0≤k≤m

(−1)k
∫ c

b
qkv2(v2)

(k)dx

+
∑

1≤k≤m

∑
0≤j≤k−1

(−1)j(v2)
(j)(qkv2)

(k−1−j)

]c
b

.
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Proof. From (2.1) we have

⟨L∗
(n,m)v, v⟩X = ⟨L∗

nv1, v1⟩+ ⟨L∗
mv2, v2⟩

=
∑

0≤k≤n

(−1)k
∫ b

a
(pkv1)

(k)v1(x)dx︸ ︷︷ ︸
I

+
∑

0≤k≤m

(−1)k
∫ c

b
(qkv2)

(k)v2(x)dx︸ ︷︷ ︸
J

Let us examine the term I,using the identity (2.4) we get for k ≥ 1

v1(pkv1)
(k) = (−1)kpkv1(v1)

(k)

+
d

dx

( ∑
0≤j≤k−1

(−1)j(v1)
(j)(pkv1)

(k−1−j)

)
.

Therefore, we deduce that∫ b

a
(pkv1)

(k)v1(x)dx = (−1)k
∫ b

a
pkv1(v1)

(k)(x)dx

+
∑

0≤j≤k−1

(−1)j(v1)
(j)(pkv1)

(k−1−j)

]b
a

.

A similar argument applies to the term J gives∫ c

b
(qkv2)

(k)v2(x)dx = (−1)k
∫ c

b
qkv2(v2)

(k)(x)dx

+
∑

0≤j≤k−1

(−1)j(v2)
(j)(qkv2)

(k−1−j)

]c
b

.

In the rest of the work, we assume that n = m ≥ 3.

4. m- Dissipativity of the operator (L(n,n), D(L(n,n))).

In this section we prove the m-dissipativity of the operator (L(n,n, D(L(n,n))).

Definition 4.1 ([9]). A linear closed densely defined operator (T, D(T )) on a
complex Hilbert space X is called dissipative if

∀ u ∈ D(T ) ⊂ X, Re⟨Tu, u⟩ ≤ 0.

Definition 4.2 ([9]). A dissipative operator (T, D(T )) on a Hilbert space X is
called m-dissipative if there exists λ > 0 such that R(λI − T ) = X.
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We establish the following technical lemma which is the key to proving our main
results.

Lemma 4.1. If u ∈ Ck([a, b], R) and v ∈ Ck([a, b], C) then the following
properties hold.

1. If k = 1 then

2Re

∫ b

a
(uvv′)(x)dx = {u(b)|v|2(b)− u(a)|v|2(a)} −

∫ b

a
u′(x)|v|2(x)dx

2. If k ≥ 2, then

2Re

∫ b

a
(uvv(k))(x)dx = (−1)k

∫ b

a
(u(k)|v|2)(x)dx

+
∑

0≤j≤k−1

[
u(j)(|v|2)(k−1−j)(b)− u(j)(|v|2)(k−1−j)(a)

]

−
∑

1≤j≤k−1

(
k

j

)∫ b

a
uv(j)v(k−j)(x)dx.

Proof. 1. Let Z =

∫ b

a
(uvv′)(x)dx, we have

2Re(Z) =

∫ b

a

(
u(vv′ + v′v

)
(x)dx =

∫ b

a

(
u(|v|2)′

)
(x)dx

hence 1. follows.

2. It is will know that

2Re

∫ b

a
(uvv(k))(x)dx =

∫ b

a
u
(
vv(k) + v(k)v

)
(x)dx.

On the other hand the classical Leibnitz formula gives

(
vv

)(k)
=

∑
0≤j≤k

(
k

j

)
v(j)(v)(k−j) = v(v)(k) +

∑
1≤j≤k−1

(
k

j

)
v(j)(v)(k−j) + v(k)v.

Hence

u
(
vv(k) + v(k)v

)
= u(|v|2)(k) −

∑
1≤j≤k−1

(
k

j

)
uv(j)(v)(k−j)

= (−1)ku(k)|v|2 + d

dt

∑
0≤j≤k−1

(−1)ju(j)(|v|2)(k−1−j) −
∑

1≤j≤k−1

(
k

j

)
uv(j)(v)(k−j).
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It follows that

∫ b

a
u
(
vv(k) + v(k)v

)
(x)dx = (−1)k

∫ b

a
u(k)|v|2(x)dx

+
∑

0≤j≤k−1

(−1)j
[
u(j)(|v|2)(k−1−j)(x)

]b
a
−

∑
1≤j≤k−1

(
k

j

)∫ b

a
uv(j)(v)(k−j)(x)dx.

Proposition 4.1. Assume that the following conditions are satisfies

(A−1)∗PA−1 = (B−1)∗QB−1,(4.1) ∑
1≤j≤k−1

(
k

j

)(∫ b

a
pku

(j)
1 u1

(k−j)(x)dx

+

∫ c

b
qku

(j)
2 u2

(k−j)(x)dx

)
= 0, k = 3, ..., n,(4.2)

for all (u1, u2) ∈ D(L(n,n)). Then there exists a positive constant ρ′ > 0 such
that the operators (L− ρ′I) is dissipative.

Proof. We prove that (Ln,n − ρ′I) is dissipative for some ρ′ > 0. The proof
requires two steps.

Step 1. From (2.1) we have

⟨L(n,n)u, u⟩X = ⟨L1nu1, u1⟩L2(I1)
+ ⟨L2nu2, u2⟩L2(I2)

=
∑

0≤k≤n

∫ b

a
pku1u

(k)
1 (x)dx+

∑
0≤k≤n

∫ c

b
qku2u

(k)
2 (x)dx.

Therefore we have

Re⟨L(n,n)u, u⟩X =

∫ b

a
p0(x)|u1|2(x)dx+Re

(∫ b

a
p1u1u

′
1(x)dx

)
+

∑
2≤k≤n

Re

(∫ b

a
pku1u

(k)
1 (x)dx

)
+

∫ c

b
q0(x)|u2|2(x)dx

+Re

(∫ c

b
q1u2u

′
2(x)dx

)
+

∑
2≤k≤n

Re

(∫ c

b
qku2u

(k)
2 (x)dx

)
.
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Form Lemma 4.1 we deduce that

Re⟨L(n,n)u, u⟩X =
1

2

{∫ b

a
2p0|u1|2(x)dx+

∑
1≤k≤n

(−1)k
∫ b

a
p
(k)
k |u1|2(x)dx

+
∑

1≤k≤n

∑
0≤j≤k−1

p
(j)
k (|u1|2)(k−1−j)

]b
a
−

∑
2≤k≤n

∑
1≤j≤k−1

(
k

j

)∫ b

a
pku

(j)
1 (u1)

(k−j)dx

+

∫ c

b
2q0|u2|2(x)dx+

∑
1≤k≤n

(−1)k
∫ c

b
q
(k)
k |u2|2(x)dx

+
∑

1≤k≤n

∑
0≤j≤k−1

q
(j)
k (|u2|2)(k−1−j)

]c
b
−

∑
2≤k≤n

∑
1≤j≤k−1

(
k

j

)∫ c

b
qku

(j)
2 (u2)

(k−j)dx

}
= R1 +R2 +R3,

where

R1 =
1

2

{ ∑
1≤k≤n

∑
0≤j≤k−1

q
(j)
k (|u2|2)(k−1−j)(c)−

∑
1≤k≤n

∑
0≤j≤k−1

p
(j)
k (|u1|2)(k−1−j)(a)

}
,

R2 =
1

2

{ ∑
1≤k≤n

∑
1≤j≤k

p
(j−1)
k (|u1|2)(k−j)(b)−

∑
1≤k≤n

∑
1≤j≤k

q
(j−1)
k (|u2|2)(k−j)(b)

}
and

R3 =
1

2

{∫ b

a
2p0|u1|2(x)dx+

∑
1≤k≤n

(−1)k
∫ b

a
p
(k)
k |u1|2(x)dx

+

∫ c

b
2q0|u2|2(x)dx+

∑
1≤k≤m

(−1)k
∫ c

b
q
(k)
k |u2|2(x)dx

−
∑

2≤k≤n

∑
1≤j≤k−1

(
k

j

)∫ b

a
pku

(j)
1 (u1)

(k−j)dx

−
∑

2≤k≤n

∑
1≤j≤k−1

(
k

j

)∫ c

b
qku

(j)
2 (u2)

(k−j)dx

}
.

Step 2. Now let us consider each of the above terms separately.
As (u1, u2) ∈ D(L(n,n)) we have that

R1 =
1

2

{ ∑
1≤k≤n

∑
0≤j≤k−1

q
(j)
k

∑
0≤r≤k−1−j

(
k − 1− j

r

)
γrcγ

k−j−r
c |u2(c)|2

−
∑

1≤k≤n

∑
0≤j≤k−1

p
(j)
k

∑
0≤r≤k−1−j

(
k − 1− j

r

)
γraγ

k−1−j−r
a |u1(a)|2

}
.

Let

Ak(x) = −1

2

( ∑
0≤j≤k−1

∑
0≤r≤k−1−j

(
k − 1− j

r

)
γraγ

k−1−j−r
a p

(j)
k (x)

)
b− x

b− a
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for k = 1, 2...., n, and x ∈ I1 and

Bk(x) =
1

2

( ∑
0≤j≤k−1

∑
0≤r≤k−1−j

(
k − 1− j

r

)
γrcγ

k−1−j−r
c q

(j)
k (x)

)
c− x

c− b

for k = 1, 2....,m, and x ∈ I2. It follows that

R1 =
∑

1≤k≤n

∫ c

b

(
Bk(x)|u2(x)|2

)′
dx+

∑
1≤k≤n

∫ b

a

(
Ak(x)|u1(x)|2

)′
dx.

Note that for k = 1, 2, ..., n(
Bk(x)|u2(x)|2

)′
= B′

k(x)|u2(x)|2 + 2Bk(x)Re(u2(x)u
′
2(x))

≤ |B′
k(x)||u2(x)|2 + 2|Bk(x)||u2(x)||u′2(x)|.

Now, not further that for all ϵ > 0, ϵ2|u′2(x)|2 + 1
ϵ2
|u2(x)|2 ≥ 2|u2(x)||u′2(x)|

which implies that
(
Bk(x)|u2(x)|2

)′ ≤ |B′
k(x)||u2(x)|2 + |Bk(x)|

(
ϵ2|u2(x)|2 +

1
ϵ2
|u′2(x)|2

)
Similarly for k = 1.2, ..., n

(
Ak(x)|u1(x)|2

)′ ≤ |A′
k(x)||u1(x)|2 +

|Ak(x)|
(
1
ϵ2
|u1(x)|2 + ϵ2|u′1(x)|2.

)
R1 ≤

∑
1≤k≤n

∫ c

b

[
|B′

k(x)||u2(x)|2 + |Bk(x)|
(
ϵ2|u′2(x)|2 +

1

ϵ2
|u2(x)|2

)]
dx

+
∑

1≤k≤n

∫ b

a

[
|A′

k(x)||u1(x)|2 + |Ak(x)|
(
ϵ2|u′1(x)|2 +

1

ϵ2
|u1(x)|2

)]
dx.

We then apply our hypotheses (4.1) and (4.2) to check that

Re⟨Lu, u⟩X ≤
1

2

{ ∑
1≤k≤n

∫ c

b

[
|B′

k(x)||u2(x)|2 + |Bk(x)|
(
ϵ2|u′2(x)|2 +

1

ϵ2
|u2(x)|2

)]
dx

+
∑

1≤k≤n

∫ b

a

[
|A′

k(x)||u1(x)|2 + |Ak(x)|
(
ϵ2|u′1(x)|2 +

1

ϵ2
|u1(x)|2

)]
dx

}

+
1

2

{
k[u1]Pk[u1](b)− k[u2]Qk[u2](b)

}
+

1

2

{ ∑
1≤k≤n

(−1)k
∫ b

a
p
(k)
k |u1|2(x)dx+

∑
1≤k≤m

(−1)k
∫ c

b
q
(k)
k |u2|2(x)dx

+ 2

∫ b

a
p0|u1|2(x)dx− 2

∫ b

a
p2|u′1|2dx+ 2

∫ c

b
q0|u2|2(x)dx− 2

∫ c

b
q2|u′2|2dx

}
.
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The above inequality implies

Re⟨L(n,n)u, u⟩X

≤ 1

2

{∫ b

a

( ∑
1≤k≤n

(
|A′

k(x)|+
|Ak(x)|
ϵ2

+ (−1)kp
(k)
k (x)

)
+ 2p0(x)

)
|u1|2(x)dx

−
∫ b

a

(
2p2(x)− ϵ2

∑
1≤k≤n

|Ak(x)|2
)
|u′1|2(x)dx

+

∫ c

b

( ∑
1≤k≤n

(
|B′

k(x)|+
|Bk(x)|
ϵ2

+ (−1)kq
(k)
k (x)

)
+ 2q0(x)

)
|u2|2(x)dx

−
∫ c

b

(
2q2(x)− ϵ2

∑
1≤k≤m

|Bk(x)|2
)
|u′2|2(x)dx

}

+
1

2

{
(Ak[u1])

∗(A−1)∗PA−1Ak[u1](b)− (Bk[u2])
∗(B−1)∗QB−1Bk[u2](b)

}
.

For sufficiently small ϵ > 0 such that(
2p2(x)− ϵ2

∑
1≤k≤n

|Ak(x)|2
)
> 0

and (
2q2(x)− ϵ2

∑
1≤k≤n

|Bk(x)|2
)
> 0

we obtain that Re⟨L(n,n)u, u⟩X ≤ nmax(α, β)∥(u1, u2)∥X where

α = sup
a≤x≤b

{|A′
k(x)|+

|Ak(x)|
ϵ2

+ |p(k)k (x)|+ 2

n
|p0(x)|, k = 1, 2, ..., n}

and

β = sup
b≤x≤c

{|B′
k(x)|+

|Bk(x)|
ϵ2

+ |q(k)k (x)|+ 2

n
|q0(x)| k = 1, 2, ..., n}.

Hence, ⟨
(
L − nmax(α, β)

)
u, u⟩X ≤ 0. This prove that (L(n,n) − ρ′I,D(L(n,n)))

is dissipative.

Remark 4.1. As above, we can define two matrix P̃ and Q̃ inMn(R) satisfying
the following equality∑

1≤k≤n

∑
0≤j≤k−1

(
q
(j)
k

(
|v2|2

)(k−1−j)
(b) + 2(−1)jv2

(j)(qkv2)
(k−1−j)(b)

)

−
( ∑

1≤k≤n

∑
0≤j≤k−1

2(−1)jv1
(j)(pkv1)

(k−1−j)(b) + p
(j)
k

(
|v1|2

)(k−1−j)
(b)

)

=

{
k[v2](b)Q̃k[v2](b)− k[v1](b)P̃ k[v1](b)

}
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Proposition 4.2. Assume that the following conditions are satisfies

(A−1)∗P̃A−1 = (B−1)∗Q̃B−1,(4.3) ∑
1≤j≤k−1

(
k

j

)(∫ b

a
p
(j)
k v

(j)
1 v1

(k−j)(x)dx+

∫ c

b
q
(j)
k v

(j)
2 v2

(k−j)(x)dx

)
= 0,(4.4)

k = 3, ..., n,

for all (v1, v2) ∈ D(L∗
(n,n)). Then there exists a positive constant ρ′′ > 0 such

that the operators (L(n,n) − ρ′′I)∗ is dissipative.

Proof. Now to prove that (L∗
(n,n)−ρ

′′I,D(L∗)) is dissipative for some constant

ρ′′ > 0,we proceed as in the proof of the previous proposition. From Lemma 3.1
it follows that

⟨L∗
(n,n)v, v⟩X =

∫ b

a
p0|v1|2dx−

∫ b

a
p1v1v1

′dx+
∑

2≤k≤n

(−1)k
∫ b

a
pkv1(v1)

(k)dx

+
∑

1≤k≤n

∑
0≤j≤k−1

(−1)j(v1)
(j)(pkv1)

(k−1−j)

]b
a

+

∫ c

b
q0|v2|2dx−

∫ c

b
q1v2v2

′dx

+
∑

2≤k≤n

(−1)k
∫ c

b
qkv2(v2)

(k)dx+
∑

1≤k≤m

∑
0≤j≤k−1

(−1)j(v2)
(j)(qkv2)

(k−1−j)

]c
b

and so that

Re⟨L∗
(n,n)v, v⟩X =∫ b

a
p0|v1|2dx−Re

(∫ b

a
p1v1v1

′dx

)
+

∑
2≤k≤n

(−1)kRe

(∫ b

a
pkv1(v1)

(k)dx

)

+Re

( ∑
1≤k≤n

∑
0≤j≤k−1

(−1)j(v1)
(j)(pkv1)

(k−1−j)

]b
a

)

+

∫ c

b
q0|v2|2dx−Re

(∫ c

b
q1v2v2

′dx

)
+

∑
2≤k≤n

(−1)kRe

(∫ c

b
qkv2(v2)

(k)dx

)

+Re

( ∑
1≤k≤n

∑
0≤j≤k−1

(−1)j(v2)
(j)(qkv2)

(k−1−j)

]c
b

)
.

Taking into account Lemma 4.1 we get the following equality

2Re⟨L∗
(n,n)v, v⟩X =∫ b

a
2p0|v1|2dx−

(
p1(b)|v1|2(b)− p1(a)|v1|2(a)−

∫ b

a
p′1|v1|2(x)dx

)



GENERATION OF ANALYTIC SEMIGROUPS ... 825

+
∑

2≤k≤n

∫ b

a
p
(k)
k |v1|2(x)dx

+
∑

2≤k≤n

(−1)k
∑

0≤j≤k−1

(
p
(j)
k (|v1|2)(k−1−j)(b)− p

(j)
k (|v1|2)(k−1−j)(a)

)

−
∑

2≤k≤n

∑
1≤j≤k−1

(
k

j

)∫ b

a
p
(j)
k v

(j)
1 v1

(k−j)(x)dx

+

∫ c

b
2q0|v2|2dx−

(
q1(c)|v2|2(c)− q1(b)|v2|2(b)−

∫ c

b
q′1|v2|2(x)dx

)
+

∑
2≤k≤m

∫ c

b
q
(k)
k |v2|2(x)dx

+
∑

2≤k≤m

(−1)k
∑

0≤j≤k−1

(
q
(j)
k (|v2|2)(k−1−j)(c)− q

(j)
k (|v2|2)(k−1−j)(b)

)

−
∑

2≤k≤n

∑
1≤j≤k−1

(
k

j

)∫ c

b
q
(j)
k v

(j)
2 v2

(k−j)(x)dx

+ 2Re

( ∑
1≤k≤n

∑
0≤j≤k−1

(−1)jv2
(j)(qkv2)

(k−1−j)(c)

−
∑

1≤k≤n

∑
0≤j≤k−1

(−1)jv1
(j)(pkv1)

(k−1−j)(a)

)

+ 2Re

( ∑
1≤k≤n

∑
0≤j≤k−1

(−1)jv2
(j)(qkv2)

(k−1−j)(b)

−
∑

1≤k≤n

∑
0≤j≤k−1

(−1)jv1
(j)(pkv1)

(k−1−j)(b)

)
.

From (4.3) we deduce that

2Re⟨L∗
(n,n)v, v⟩X

=

{∫ b

a
2p0|v1|2(x)dx+

∑
1≤k≤n

∫ b

a
p
(k)
k |v1|2(x)dx+

∫ c

b
2q0|v2|2(x)dx

+
∑

1≤k≤n

∫ c

b
q
(k)
k |v2|2(x)dx

}

+
∑

1≤k≤n

∑
0≤j≤k−1

(
q
(j)
k

(
|v2|2

)(k−1−j)
(c)− p

(j)
k

(
|v1|2

)(k−1−j)
(a)

)

+
∑

1≤k≤n

∑
0≤j≤k−1

(
q
(j)
k

(
|v2|2

)(k−1−j)
(b)− p

(j)
k

(
|v1|2

)(k−1−j)
(b)

)
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+ 2Re

( ∑
1≤k≤n

∑
0≤j≤k−1

(−1)jv2
(j)(qkv2)

(k−1−j)(c)

−
∑

1≤k≤n

∑
0≤j≤k−1

(−1)jv1
(j)(pkv1)

(k−1−j)(a)

)

+ 2Re

( ∑
1≤k≤n

∑
0≤j≤k−1

(−1)jv2
(j)(qkv2)

(k−1−j)(b)

−
∑

1≤k≤n

∑
0≤j≤k−1

(−1)jv1
(j)(pkv1)

(k−1−j)(b)

)

− 2

∫ b

a
p′2|v′1|2(x)dx− 2

∫ c

b
q′2|v′2|2(x)dx = R′

1 +R′
2 +R′

3

where

R′
1 =

∑
1≤k≤n

∑
0≤j≤k−1

(
q
(j)
k

(
|v2|2

)(k−1−j)
(c)− p

(j)
k

(
|v1|2

)(k−1−j)
(a)

)

+ 2Re

( ∑
1≤k≤m

∑
0≤j≤k−1

(−1)jv2
(j)(qkv2)

(k−1−j)(c)

−
∑

1≤k≤n

∑
0≤j≤k−1

(−1)jv1
(j)(pkv1)

(k−1−j)(a)

)
,

R′
2 =

∑
1≤k≤n

∑
0≤j≤k−1

(
q
(j)
k

(
|v2|2

)(k−1−j)
(b)− p

(j)
k

(
|v1|2

)(k−1−j)
(b)

)

+ 2Re

( ∑
1≤k≤n

∑
0≤j≤k−1

(−1)jv2
(j)(qkv2)

(k−1−j)(b)

−
∑

1≤k≤n

∑
0≤j≤k−1

(−1)jv1
(j)(pkv1)

(k−1−j)(b)

)
and

R′
3 =

{∫ b

a
2p0|v1|2(x)dx+

∑
1≤k≤n

∫ b

a
p
(k)
k |v1|2(x)dx+

∫ c

b
2q0|v2|2(x)dx

+
∑

1≤k≤n

∫ c

b
q
(k)
k |v2|2(x)dx

}
− 2

∫ b

a
p′2|v′1|2(x)dx− 2

∫ c

b
q′2|v′2|2(x)dx.

Now let us consider each of the term in the above equation separately: From
easy calculations, it follows that for (v1, v2) ∈ D(L∗

n,n)

R′
1 =

∑
1≤k≤n

∑
0≤j≤k−1

∑
0≤r≤k−1−j

(
k − 1− j

r

)
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·
(
ωr
cω

k−1−j−r
c q

(j)
k (c) + 2(−1)jωj

cω
k−1−j−r
c q

(r)
k (c)

)
|v2(c)|2

−
∑

1≤k≤n

∑
0≤j≤k−1

∑
0≤r≤k−1−j

(
k − 1− j

r

)

·
(
ωr
aω

k−1−j−r
a p

(j)
k (a) + 2(−1)jωj

aω
k−1−j−r
a p

(r)
k (a)

)
|v1(a)|2.

Put for k = 1, 2, ..., n

Ck(x) =
∑

0≤j≤k−1

∑
0≤r≤k−1−j

(
k − 1− j

r

)

·
(
ωr
aω

k−1−j−r
a p

(j)
k (a) + 2(−1)jωj

aω
k−1−j−r
a p

(r)
k (a)

)
b− x

b− a
, x ∈ I1,

and

Dk(x) =
∑

0≤j≤k−1

∑
0≤r≤k−1−j

(
k − 1− j

r

)

·
(
ωr
cω

k−1−j−r
c q

(j)
k (c) + 2(−1)jωj

cω
k−1−j−r
c q

(r)
k (c)

)
c− x

c− b
, x ∈ I2.

From this we conclude

R′
1 =

∑
1≤k≤n

[ ∫ b

a

(
Ck(x)|v1(x)|2

)′
dx+

∫ c

b

(
Dk(x)|v2(x)|2

)′
dx

]
.

In same way as in proof of Proposition 4.1,it is possible to prove that

R′
1 ≤

∑
1≤k≤n

{∫ c

b

[
|D′

k(x)||v2(x)|2 + |Dk(x)|
(
ϵ2|v′2(x)|2 +

1

ϵ2
|v2(x)|2

)]
dx

+

∫ b

a

[
|C ′

k(x)||v1(x)|2 + |Ck(x)|
(
ϵ2|v′1(x)|2 +

1

ϵ2
|v1(x)|2

)]
dx

}
.

Concerning R′
2 we have the following identity

R′
2 = Re

{
k[v2](b)Q̃k[v2](b)− k[v1](b)P̃ k[v1](b)

}
.

According to the interface condition and equation (3.4) it is possible to prove
that

R′
2 = Re

{
k[v2](b)Q̃k[v2](b)− k[v1](b)P̃ k[v1](b)

}
= Re

{(
Bk[v2](b)

)∗(
B−1

)∗
Q̃B−1Bk[v2](b)

−
(
Ak[v1](b)

)∗(
A−1

)∗
P̃A−1Ak[v1](b)

}
= 0.
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From the above calculations, we get the following estimation of Re ⟨L∗v | v⟩X
as

Re⟨L∗v, v⟩X ≤ 1

2

{∫ b

a

( ∑
1≤k≤n

(
|C ′

k(x)|+
|Ck(x)|
ϵ2

+ p
(k)
k (x)

)
+ 2p0(x)

)
|v1|2(x)dx

−
∫ b

a

(
2p′2(x)− ϵ2

∑
1≤k≤n

|Ck(x)|2
)
|v′1|2(x)dx

+

∫ c

b

( ∑
1≤k≤n

(
|D′

k(x)|+
|Dk(x)|
ϵ2

+ q
(k)
k (x)

)
+ 2q0(x)

)
|v2|2(x)dx

−
∫ c

b

(
2q′2(x)− ϵ2

∑
1≤k≤n

|Dk(x)|2
)
|v′2|2(x)dx

}
.

For sufficiently small ϵ > 0 such that(
2p′2(x)− ϵ2

∑
1≤k≤n

|Ck(x)|2
)
> 0

and (
2q′2(x)− ϵ2

∑
1≤k≤m

|Dk(x)|2
)
> 0

we obtain that Re⟨L∗v, v⟩X ≤ max(α′, β′)∥v∥X where

α′ = sup
a≤x≤b

{|C ′
k(x)|+

|Ck(x)|
ϵ2

+ |p(k)k (x)|+ 2

n
|p0(x)|, k = 1, 2, ..., n}

and

β′ = sup
b≤x≤c

{|D′
k(x)|+

|Dk(x)|
ϵ2

+ |q(k)k (x)|+ 2

n
|q0(x)| k = 1, 2, ...,m}.

Hence,

Re

⟨(
L∗ − nmax(α′, β′)︸ ︷︷ ︸

ρ′′

)
v, v

⟩
X

≤ 0.

Theorem 4.1. Assume that the conditions (4.1) − (4.2) − (4.3) − (4.4) are
satisfies. Then there exists a positive constant γ > 0 such that the operators
(L− γI) is m-dissipative.

Proof. From Proposition 4.1 it follows that there exists a constant ρ′ > 0 such
that Re⟨L(n,n)u, u⟩ ≤ ρ′∥u∥2X For all u ∈ D(Ln,n). Similarly, by Proposition 4.2
we have for all v ∈ D(L∗

n,n) Re⟨L∗
(n,n)v, v⟩ ≤ ρ′′∥v∥2X for some γ′0 > 0. If we

put γ = max(ρ′, ρ′′), we can conclude that
(
L(n,n) − γI

)
and

(
L(n,n) − γI

)∗
are

dissipative.
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The following corollary is an immediate consequence of Theorem 4.1.

Corollary 4.1. Under the assumptions of Theorem 4.1, the operator
(L(n,n), D(Ln,n)) generates a contraction semigroup on X.

5. Analyticity of the semigroup generated by (L,D(L))

In this section we shall apply the general results of Section 4. In order to
establish the analyticity of the semigroup generated by (L(n,n), D(L(n,n)), we
need the following theorem.

Theorem 5.1 ([6]). Let A be a densely defined operator in a complex Hilbert
space X such that; for u ∈ D(A), Re ⟨Au , u⟩ ± δIm ⟨Au , u⟩ ≤ 0. Then A
generates an analytic semigroup of contractions.

In analogy with [3, Theorem 2.4] and [10, Theorem 4] we prove the following
result.

Theorem 5.2. Assume that (4.1), (4.2), (4.3), (4.4) are hold and suppose in ad-
dition that there exist real numbers µ > 0 and ν > 0 such that

∑
2≤k≤n

(∫ b

a
|pk(x)||u

(k)
1 (x)|2dx+

∫ c

b
|qk(x)||u

(k)
2 (x)|2dx

≤ µ

∫ b

a
|u′1(x)|2dx+ ν

∫ c

b
|u′2(x)|2dx.(5.1)

Then the operator L(n,n) generates an analytic semigroup.

Proof.

⟨
L(n,n)u, u

⟩
X

=
∑

0≤k≤n

(∫ b

a
pku1u

(k)
1 (x)dx+

∫ c

b
qku2u

(k)
2 (x)dx

)

=

∫ b

a
p0|u1|2(x)dx+

∫ c

b
q0|u2|2(x)dx+

∫ b

a
p1u1u

′
1(x)dx+

∫ c

b
q1u2u

′
2(x)dx

+
∑

2≤k≤n

(∫ b

a
pku1u

(k)
1 (x)dx+

∫ c

b
qku2u

(k)
2 (x)dx

)

We deduce that

Im
⟨
L(n,n)u, u

⟩
X

=

∫ b

a
p1Im

(
u1u

′
1(x)

)
dx+

∫ c

b
q1Im

(
u2u

′
2(x)

)
dx

+
∑

2≤k≤n

(∫ b

a
pkIm

(
u1u

(k)
1 (x)

)
dx+

∫ c

b
qkIm

(
u2u

(k)
2 (x)

)
dx.
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Hence we can conclude that

|Im
⟨
L(n,n)u, u

⟩
X
| ≤

∫ b

a
|p1||u1||u′1(x)|dx+

∫ c

b
|q1||u2||u′2(x)|dx

+
∑

2≤k≤n

(∫ b

a
|pk||u1||u

(k)
1 |(x)dx+

∫ c

b
|qk||u2||u

(k)
2 |(x)dx

≤
∫ b

a
|p1|

(
ϵ−2|u1(x)|2 + ϵ2|u′1(x)|2

)
dx+

∫ c

b
|q1|

(
ϵ−2|u2(x)|2 + ϵ2|u′2(x)|2

)
dx

+
∑

2≤k≤n

(∫ b

a
|pk|ϵ−2|u1(x)|2dx+

∫ c

b
|qk|ϵ−2|u2(x)|2dx

)

+
∑

2≤k≤n

(∫ b

a
|pk(x)|ϵ2|u

(k)
1 (x)|2dx+

∫ c

b
|qk(x)|ϵ2|u

(k)
2 (x)|2dx

)

=

∫ b

a

(
ϵ−2

∑
1≤k≤n

|pk(x)|
)
|u1(x)|2dx+

∫ b

a
ϵ2|p1(x)||u′1(x)|2dx

+

∫ c

b

(
ϵ−2

∑
1≤k≤n

|qk(x)|
)
|u2(x)|2dx+

∫ c

b
ϵ2|q1(x)||u′2(x)|2dx

+
∑

2≤k≤n

(∫ b

a
|pk(x)|ϵ2|u

(k)
1 (x)|2dx+

∫ c

b
|qk(x)|ϵ2|u

(k)
2 (x)|2dx

)
.

From (5.1) it follows that

|Im
⟨
L(n,n), u

⟩
X
|

≤
∫ b

a

(
ϵ−2

∑
1≤k≤n

|pk(x)|
)
|u1(x)|2dx+

∫ b

a

(
µ+ ϵ2|p1(x)|

)
|u′1(x)|2dx

+

∫ c

b

(
ϵ−2

∑
1≤k≤n

|qk(x)|
)
|u2(x)|2dx+

∫ c

b

(
ν + ϵ2|q1(x)|

)
|u′2(x)|2dx.

Then we have for a sufficiently small ϵ > 0

Re ⟨Ln,nu, u⟩X + δ|Im ⟨Ln,nu, u⟩X |

≤ 1

2

{∫ b

a

( ∑
1≤k≤n

(
|A′

k(x)|+
|Ak(x)|
ϵ2

+(−1)kp
(k)
k (x)+

2δ

ϵ2
|pk(x)|

)
+2p0(x)

)
|u1|2(x)dx

−
∫ b

a

(
2p2(x)− ϵ2

∑
1≤k≤n

|Ak(x)|2 − 2δµ− 2δϵ2|p1(x)|
)
|u′1|2(x)dx
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+

∫ c

b

( ∑
1≤k≤n

(
|B′

k(x)|+
|Bk(x)|
ϵ2

+ (−1)kq
(k)
k (x) +

2δ

ϵ2
|qk(x)|

)
+ 2q0(x)

)
|u2|2(x)dx

−
∫ c

b

(
2q2(x)− ϵ2

∑
1≤k≤n

|Bk(x)|2 − 2δν − 2ϵ2δ|q1(x)|
)
|u′2|2(x)dx

}

+
1

2

{
(Ak[u1])

∗(A−1)∗PA−1Ak[u1](b)− (Bk[u2])
∗(B−1)∗QB−1Bk[u2](b)

}
≤ ρ∥u∥2X

where

ρ = max
1≤k≤n

(
n sup

a≤x≤b
(αk(x), n sup

b≤x≤c
(βk(x))

)
,

where

αk(x) = |A′
k(x)|+

|Ak(x)|
ϵ2

+ |p(k)k (x)|+ 2δ

ϵ2
|pk(x)|+

2

n
|p0(x)|, k = 1, 2, ..., n

and

βk(x) = |B′
k(x)|+

|Bk(x)|
ϵ2

+(−1)kq
(k)
k (x)+

2δ

ϵ2
|qk(x)|+

2

n
|q0(x)|, k = 1, 2, ..., n.

The proof of this theorem is completed.
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